• Skip to primary navigation
  • Skip to main content
Rapid-3D-logo-header-web-site

Rapid 3D

Professional, Industrial & Production 3D Printers South Africa

  • Products & Services

    3D Printers | 3D Scanners | 3D Design Software

    The right 3D printing solution for your production – including certified materials, consulting and a comprehensive range of services.
    The right 3D printing solution for your production – including certified materials, consulting and a comprehensive range of services.
    • Metal 3D Printers
    • Polymer Plastic 3D Printers
    • Professional 3D Scanners
    • Additive Manufacturing Consulting
  • Post-Processing Systems

    Post-Processing Systems for 3D Printing Work-flows

    Post-Processing Systems for 3D Printing Work-flows
    Turn your unfinished 3D printed polymer parts into High-Value products.
    • 3D Printing Post-Processing – Cleaning
    • 3D Printing Post-Processing – Surfacing
    • 3D Printing Post-Processing – DeepDye Colouring
    • 3D Printed Metal Surface Finishing
    • Furnaces for Metal 3D Printing
  • Industrial 3D Printing

    Industrial 3D Printing

    Production 3D Printing Equipment to take you from Concept to finished product.
    Join the Innovators & Early Adopters who have been using production 3D printing as a competitive advantage for over 20 years.
    • 3D Printing Technology
    • Additive Manufacturing
    • Rapid Manufacturing
    • Rapid Prototyping
    • Case Studies
  • 3D Printing South Africa
  • Contact
  • Store
    • Filament
    • 3D Printers (FFF)
  • Show Search
Hide Search
You are here: Home / 3D Printing Case Studies / Researchers 3D Print Tissue That Mimics Human Bile Duct

Researchers 3D Print Tissue That Mimics Human Bile Duct

by Rapid 3D

Using an EnvisionTEC 3D-Bioplotter, one of the most-utilized bioprinters on the market, researchers at Northwestern University have 3D printed tissue that mimics human bile duct.

Rapid-3D_EnvisionTEC-3D-printed-bile-duct-illustration-src_cancer.org
Image via Cancer.org

A bile duct plays a crucial role in the body, carrying bile from the liver to the intestine to facilitate digestion.
Cancer of the bile duct has an alarmingly low survival rate, and treatment requires that the disease be caught early enough for the affected part of the bile duct to be removed. But there’s some good news for those suffering from conditions of the bile duct, as researchers at Northwestern University have 3D printed a mini-tissue that mimics it.
The research is documented in a study entitled “Tailoring nanostructure and bioactivity of 3D-printable hydrogels with self-assemble peptides amphiphile (PA) for promoting bile duct formation”.
Lead author Ming Yan and colleagues 3D printed a nanostructure consisting of peptides amphiphile, or PAs, bioink and bile duct cells, or cholangiocytes.
The PAs and cholangiocytes were mixed with thiolated gelatin at 37°C and 3D printed at 4ºC using an EnvisionTEC 3D-Bioplotter, one of the most-utilized bioprinters on the market.
The material retained integrity as the bioinks printed into filaments capable of supporting multi-layered scaffolds. The researchers stabilized the scaffold by cross-linking a derivative of ethylene glycol with calcium ions; scaffold stability was observed in culture for more than a month at a temperature of 37°C.
The researchers also explored the use of a laminin-derived peptide (Ile-Lys-Val-Ala-Val, IKVAV) and the influence its inclusion in the bioink would have on the bile duct cells. Laminin is a molecule necessary for cell adhesion, and after bioprinting, the bile duct cells remained viable in vitro. Staining revealed the formation of functional bile-cell-based tube structures; when cultured in IKVAV bioink, the structures showed enhanced morphology, forming functional tubular structures.
Rapid-3D_EnvisionTEC-3D-printed-bile-duct-lab-src_northwestern-university
Author Ming Yan next to the EnvisionTEC BioPlotter 3D printer used in the study

“3D-printing has expanded our ability to produce reproducible and more complex scaffold architectures for tissue engineering applications,” the abstract states. “In order to enhance the biological response within these 3D-printed scaffolds incorporating nanostructural features and/or specific biological signaling may be an effective means to optimize tissue regeneration. Peptides amphiphiles (PAs) are a versatile supramolecular biomaterial with tailorable nanostructural and biochemical features. PAs are widely used in tissue engineering applications such as angiogenesis, neurogenesis, and bone regeneration. Thus, the addition of PAs is a potential solution that can greatly expand the utility of 3D bioprinting hydrogels in the field of regenerative medicine.”

This is the first time that a bioink-based system supplemented with PAs was used for bile duct tissue engineering. The research shows a lot of promise; the bioprinted bile ducts, as well as in-vitro systems created with the bioinks, have the potential to be valuable for research into bile duct cancer as well as the testing of treatments.
Right now, bile duct cancer is a grave diagnosis to receive, but the enhanced research that could be made possible by this work offers hope for better understanding and more effective treatments.
As a next step, the researchers now want to optimize the peptide concentration and test other signaling molecules within the bioinks to enhance the formation of functional tubular structures that mimic those found in the liver.
Additional authors of the research paper include P.L. Lewis and R.N. Shah.
Northwestern University’s research is documented in a study entitled “Tailoring nanostructure and bioactivity of 3D-printable hydrogels with self-assemble peptides amphiphile (PA) for promoting bile duct formation,” which you can access here.
Original article first appeared on 3dprint.com and was sourced from Physics World.

Share with your friends & colleagues:

Share on LinkedIn Share on Facebook Share on X (Twitter) Share on Pinterest Share on Email Share on Telegram Share on WhatsApp

3D Printing Case Studies, 3D Printing News, Medical 3D Printing Applications

Rapid 3D

Copyright Rapid 3D © 2012–2025 · PAIA · eWASA Code of Ethics · eWASA Certificate of Membership

  • Privacy Policy
  • Terms and Conditions of Service
  • Our Story
  • FAQ
  • Contact Rapid 3D South Africa